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Abstract
The coupled Kadomtsev–Petviashvili (KP) equations with variable coefficients
and Wick-type stochastic coupled KP equations are investigated. Exact
solutions are shown using the Hermite transform, the homogeneous balance
principle and the F-expansion method.

PACS numbers: 02.50.Fz, 02.30.Ik, 05.40.Ca, 05.45.−a

1. Introduction

In this paper, we shall investigate the periodic wave solutions of the coupled Kadomtsev–
Petviashvili (KP) equations with variable coefficients{

[ut + a(t)uux + b(t)vvx − h(t)ux3 ]x + g(t)uy2 = 0,

[vt + h(t)uvx − h(t)vx3 ]x + g(t)vy2 = 0,
(1.1)

where a(t), b(t), g(t) and h(t) are bounded or integrable functions on R+ and satisfy

b(t) �= 0, h(t) �= 0 and a(t) − h(t) = −αb(t), g(t) = βh(t), (1.2)

where α > 0 and β are constants.
If the problem is considered in a random environment, we can get random coupled KP

equations. In order to give the exact solutions of random coupled KP equations, we only
consider this problem in a white noise environment, that is, we consider the problem in the
white noise space and study Wick-type stochastic KP equations. We shall investigate the
following Wick-type stochastic coupled KP equations{

[Ut + A(t) � U � Ux + B(t) � V � Vx − H(t) � Ux3 ]x + G(t) � Uy2 = 0,

[Vt + H(t) � U � Vx − H(t) � Vx3 ]x + G(t) � Vy2 = 0
(1.3)
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and give their exact solutions, where ‘�’ is the Wick product on the Kondratiev distribution
space (S)−1, namely, the linear space (S)−1 is defined in the second section; A(t), B(t),G(t)

and H(t) are (S)−1-valued variables and satisfy the following conditions:

B(t) �= 0, H(t) �= 0 and A(t) − H(t) = −αB(t), G(t) = βH(t). (1.4)

Random waves are an important subject of stochastic partial differential equations.
Konotop and Vázquez investigated nonlinear random waves in [4]. In [2], Holden et al
gave a white noise functional approach to study stochastic partial differential equations in
Wick versions. Xie investigated exact solutions for Wick-type stochastic wave equations in
[7–11]. For variable coefficient equations, Zhou et al studied the periodic wave solutions for a
coupled KdV equation in [12] and gave the homogeneous balance principle and F-expansion
method in the same reference. Like Zhou et al [12] and Xie [7–11], we shall give exact periodic
wave solutions for coupled KP equations with variable coefficients (1.1) with (1.2) and for
Wick-type stochastic coupled KP equations (1.3) with (1.4) by using white noise analysis, the
homogeneous balance principle and the F-expansion method.

2. SPDEs driven by white noise

In this section, we summarize the main concepts of a white noise functional approach to
stochastic partial differential equations. Please see the book of Holden et al [2] for details.

Let hn(x) be the nth Hermite polynomials. Put ξn(x) = e− 1
2 x2

hn(
√

2x)/(π(n − 1)!)1/2,
n � 1. We have that the collection {ξn}n�1 constitutes an orthogonal basis for L2(R).

If we denote α = (α1, . . . , αd) being d-dimensional multi-indices by α1, . . . , αd ∈ N, we
have that the family of tensor products ξα = ξ(α1,...,αd ) = ξα1 ⊗ . . . ⊗ ξαd

(α ∈ Nd) forms an
orthogonal basis of L2(Rd). Let α(i) = (

α
(i)
1 , . . . , α

(i)
d

)
be the ith multi-index number in some

fixed ordering of all d-dimensional multi-indices α = (α1, . . . , αd) ∈ Nd . We can, and will,
assume that this ordering has the property that

i < j ⇒ α
(i)
1 + · · · + α

(i)
d � α

(j)

1 + . . . + α
(j)

d .

Now define

ηi = ξα(i) = ξ
α

(i)
1

⊗ · · · ⊗ ξ
α

(i)
d

, i � 1.

We denote by
(
NN

0

)
c

the space of all multi-indices α = (α1, α2, . . .) with compact support,

that is, αi ∈ N0 with finitely many αi �= 0. We set J = (
NN

0

)
c
. For α = (α1, α2, . . .) ∈ J ,

we define

Hα(ω) =
∞∏
i=1

hαi
(〈ω, ηi〉), ω ∈ S ′(Rd).

Given n ∈ N, let (S)n1 consist of those x = ∑
α cαHα ∈ ⊕n

k=1 L2(µ) with cα ∈ Rn

such that ‖x‖2
1,k = ∑

α c2
α(α!)2(2N)kα < ∞,∀k ∈ N with c2

α = |cα|2 = ∑n
k=1

(
c(k)
α

)2
if

cα = (
c(1)
α , . . . , c(n)

α

) ∈ Rn, where µ is the white noise measure on (S ′(Rd),B(S ′(Rd))), α! =∏∞
k=1 αk! and (2N)α = ∏

j (2j)αj for α = (α1, α2, . . .) ∈ J . S(Rd), resp. S ′(Rd), is the

Schwartz space, resp. Schwartz distribution space, on Rd .
The space (S)n−1 consists of all formal expansions X = ∑

α bαHα with bα ∈ Rn such that
‖X‖−1,−q = ∑

α b2
α(2N)−qα < ∞ for some q ∈ N. The family of seminorms ‖x‖1,k, k ∈ N

gives rise to a topology on (S)n1, and we can regard (S)n−1 as the dual of (S)n1 by the action

〈X, x〉 =
∑

α

(bα, cα)α!
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and (bα, cα) is the usual inner product in Rn. (S)n1, resp. (S)n−1, is called the Kondratiev test
function space, resp. Kondratiev distribution space.

For X = ∑
α aαHα, Y = ∑

α bαHα ∈ (S)n−1 with aα, bα ∈ Rn,

X � Y =
∑
α,β

(aα, bβ)Hα+β

is called the Wick product of X and Y.
One can prove that the spaces S(Rd),S ′(Rd), (S)1 and (S)−1 are closed under the Wick

products.
For X = ∑

α aαHα ∈ (S)n−1with aα ∈ Rn, the Hermite transform of X, denoted by H(X)

or X̃, is defined by

H(X) = X̃(z) =
∑

α

aαzα ∈ Cn (when convergent),

where z = (z1, z2, . . .) ∈ CN (the set of all sequences of complex numbers) and zα =
z
α1
1 z

α2
2 · · · zαn

n . . . for α = (α1, α2, . . .) ∈ J . For X, Y ∈ (S)−1, by this definition we have

X̃ � Y (z) = X̃(z) · Ỹ (z)

for all z such that X̃(z) and Ỹ (z) exist. The product on the right-hand side of the
above formula is the complex bilinear product between two elements of CN defined by(
z1

1, . . . , z
1
n

) · (
z2

1, . . . , z
2
n

) = ∑n
k=1 z1

kz
2
k , where zi

k ∈ C.
Let X = ∑

α aαHα ∈ (S)n−1. Then the vector c0 = X̃(0) ∈ Rn is called the generalized
expectation of X and is denoted by E(X). Suppose that f : V → Cm is an analytic function,
where V is a neighbourhood of E(X). Assume that the Taylor series of f around E(X)

has coefficients in Rn. Then the Wick version of f in X, denoted by f �(X), is defined by
f �(X) = H−1(f ◦ X̃) ∈ (S)m−1.

The Wick exponential of X ∈ (S)−1 can be represented as exp�{X} = ∑∞
n=0 X�n/n!.

Using the Hermite transform we have that the Wick exponential has the same algebraic
properties as the usual exponential. For example, exp�{X + Y } = exp�{X} � exp�{Y }.

Suppose that modelling considerations lead us to consider an SPDE expressed formally
as A(t, x, ∂t ,∇x, U, ω) = 0, where A is some given function, U = U(t, x, ω) is the unknown
(generalized) stochastic process, and where the operators ∂t = ∂

∂t
,∇x = (

∂
∂x1

, . . . , ∂
∂xd

)
when

x = (x1, . . . , xd) ∈ Rd . First, we interpret all products and all functions in the sense of Wick
versions. We indicate this by

A�(t, x, ∂t ,∇x, U, ω) = 0. (2.1)

Secondly, we (formally) take the Hermite transform of (2.1). This turns Wick products into
ordinary products (between complex numbers) and the equation takes the form

Ã(t, x, ∂t ,∇x, Ũ , z1, z2, . . .) = 0, (2.2)

where Ũ = H(U) is the Hermite transform of U and z1, z2, . . . are complex numbers.
Suppose we can find a solution u = u(t, x, z) of the equation Ã(t, x, ∂t ,∇x, u, z) = 0
for each z = (z1, z2, . . .) ∈ Kq(r) for some q, r , where Kq(r) = {z = (z1, z2, . . .) ∈ CN

and
∑

α �=0 |zα|2(2N)qα < r2}. Then, under certain conditions, we can take the inverse
Hermite transform U = H−1u ∈ (S)−1 and thereby obtain a solution U of the original Wick
equation (2.1). We have the following theorem, which was proved in Holden et al [2].

Theorem 2.1. Suppose u(t, x, z) is a solution (in the usual strong, pointwise sense) of
equation (2.2) for (t, x) in some bounded open set G ⊂ R × Rd , and for all z ∈ Kq(r), for
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some q, r . Moreover, suppose that u(t, x, z) and all its partial derivatives, which occur in
(2.2), are bounded for (t, x, z) ∈ G × Kq(r), continuous with respect to (t, x) ∈ G for all
z ∈ Kq(r) and analytic with respect to z ∈ Kq(r), for all (t, x) ∈ G.

Then there exists a unique U(t, x) ∈ (S)−1 such that u(t, x, z) = Ũ (t, x)(z) for all
(t, x, z) ∈ G × Kq(r) and U(t, x) solves (in the strong sense in (S)−1) equation (2.1)
in (S)−1.

3. Exact solutions of stochastic coupled KP equations

In this section, we will use theorem 2.1 for d = 1 to give exact solutions of (1.1) with (1.2)
and (1.3) with (1.4).

Taking the Hermite transform of (1.3), we get the deterministic equations
[Ũt (t, x, z) + Ã(t, z)Ũ(t, x, z)Ũx(t, x, z) + B̃(t, z)Ṽ (t, x, z)Ṽx(t, x, z)

− H̃ (t, z)Ũx3(t, x, z)]x + G̃(t, z)Ũy2(t, x, z) = 0,

[Ṽt (t, x, z) + H̃ (t, z)Ũ(t, x, z)Ṽx(t, x, z) − H̃ (t, z)Ṽx3(t, x, z)]x
+ G̃(t, z)Ṽy2(t, x, z) = 0,

(3.1)

where z = (z1, z2, . . .) ∈ CN is a parameter. We first solve equation (3.1) with the conditions

B(t, z) �= 0, H(t, z) �= 0

and (3.2)

A(t, z) − H(t, z) = −αB(t, z), G(t, z) = βH(t, z).

Put u(t, x, z) = Ũ (t, x, z), v(t, x, z) = Ṽ (t, x, z), A(t, z) = Ã(t, z), B(t, z) =
B̃(t, z),G(t, z) = G̃(t, z) and H(t, z) = H̃ (t, z). We use the F-expansion method to give the
solutions of (3.1). Suppose that the solutions of (3.1) are of the form{

u(t, x, y, z) = P(ϕ(t, x, y, z)),

v(t, x, y, z) = Q(ϕ(t, x, y, z)),
(3.3)

where P(ϕ) and Q(ϕ) are functions of ϕ,

ϕ(t, x, y, z) = λx + θy + σ

∫ t

0
H(s, z) ds + µ0, (3.4)

where λ, θ and σ are undetermined parameters, µ0 is a constant.
Substituting (3.3) and (3.4) into (3.1), we have

λσH(t, z)P ′′ + λ2A(t, z)[(P ′)2 + PP ′′] + λ2B(t, z)[(Q′)2 + QQ′′]

+ λ4H(t, z)P (4) + θ2G(t)P ′′ = 0,

λσH(t, z)Q′′ + λ2H(t, z)[P ′Q′ + PQ′′] + λ4H(t, z)Q(4) + θ2G(t, z)Q′′ = 0.

(3.5)

Considering homogeneous balance between (P ′)2 + PP ′′, (Q′)2 + QQ′′ and P (4) in the
first equation of (3.5) as well as P ′Q′ + PQ′′ and G(4) in the second equation of (3.5), we can
suppose that P(·) and Q(·) can be expressed in the following form:{

P(ϕ) = a0 + a1�(ϕ) + a2�
2(ϕ), a2 �= 0,

Q(ϕ) = b0 + b1�(ϕ) + b2�
2(ϕ), b2 �= 0,

(3.6)

where a0, a1, a2, b0, b1 and b2 are constants to be determined later, �(·) satisfies the following
equation:

[�′(ϕ)]2 = q0 + q1�
2(ϕ) + q2�

4(ϕ). (3.7)
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This implies that the following relations hold for �(ϕ):
�′(ϕ)�′′(ϕ) = q1�(ϕ)�′(ϕ) + 2q2�(ϕ)3�′(ϕ),

�′′(ϕ) = q1�(ϕ) + 2q2�(ϕ)3,

�(3)(ϕ) = q1�
′(ϕ) + 6q2�(ϕ)2�′(ϕ)

(3.8)

where ϕ(t, x, y, z) is defined by (3.4).
Substituting (3.6) and (3.7) into (3.5) and using relations (3.8) yield

2λ2
[−12a2q2λ

2H(t, z) + b2
2B(t, z) + a2

2A(t, z)
]
�3�′

+ 3λ2
[−2a1q2λ

2H(t, z) + a1a2A(t, z) + b1b2B(t, z)
]
�2�′

+
[
2a2σλH(t, z) + b2

1λ
2B(t, z) − 8a2q1λ

4H(t, z) + 2a0a2λ
2A(t, z)

+ a2
1λ

2A(t, z)+2b0b2λ
2B(t, z)+2a2θ

2G(t, z)
]
��′

+
[
a1σλH(t, z) + a0a1λ

2A(t, z) + b0b1λ
2B(t, z)

− a1q1λ
4H(t, z) + a1θ

2G(t, z)
]
�′ = 0, (3.9)

2b2λ
2[a2 − 12q2λ

2]H(t, z)�3�′ + λ2[2a1b2 − 6b1q2λ
2 + a2b1]H(t, z)�2�′

+ [(2b2λσ + 2a0b2λ
2 − 8b2q1λ

4 + a1b1λ
2)H(t, z) + 2b2θ

2G(t, z)]��′

+ b1[(λσ + a0λ
2 − q1λ

4)H(t, z) + θ2G(t, z)]�′ = 0. (3.10)

Cancelling �′ and setting each coefficient of �j (j = 1, 2, 3) to zero implies a system of
equations for a0, a1, a2, b0, b1, b2, λ, θ and σ

λ2
[
b2

2B(t, z) − 12a2q2λ
2H(t, z) + a2

2A(t, z)
] = 0,

λ2[a1a2A(t, z) − 2a1q2λ
2H(t, z) + b1b2B(t, z)] = 0,

2a2σλH(t, z) + b2
1λ

2B(t, z) − 8a2q1λ
4H(t, z) + 2a0a2λ

2A(t, z)

+ a2
1λ

2A(t, z) + 2b0b2λ
2B(t, z) + 2a2θ

2G(t, z) = 0,

a1σλH(t, z) + a0a1λ
2A(t, z) + b0b1λ

2B(t, z) − a1q1λ
4H(t, z) + a1θ

2G(t, z) = 0,

2b2λ
2[a2 − 12q2λ

2]H(t, z) = 0,

λ2[2a1b2 − 6b1q2λ
2 + a2b1]H(t, z) = 0,

(2b2λσ + 2a0b2λ
2 − 8b2q1λ

4 + a1b1λ
2)H(t, z) + 2b2θ

2G(t, z) = 0,

b1[(λσ + a0λ
2 + q1λ

4)H(t, z) + θ2G(t, z)] = 0.

(3.11)

The solutions of (3.11) under the condition (3.2) and a2b2λθσ �= 0 are
a0 = ±√

αb0, a1 = 0, b1 = 0,

a2 = 12λ2q2, b2 = ±12λ2q2
√

α,

θ2 = λ2

β
(4λ2q1 ∓ √

αb0) − λ
β
σ,

λ, σ, β, b0, q1 and q2 are arbitrary constants.

(3.12)

Substituting (3.12) into (3.6) implies that, for any z ∈ CN, the general form solutions of (3.1)
with (3.2) are the following:{

u(t, x, y, z) = P(ϕ(t, x, y, z)) = ±√
αb0 + 12λ2q2�

2(ϕ(t, x, y, z)),

v(t, x, y, z) = Q(ϕ(t, x, y, z)) = b0 ± 12λ2q2
√

α�2(ϕ(t, x, y, z))
(3.13)

with ϕ(t, x, y, z) being defined by (3.4), θ , σ and λ satisfy (3.12); α > 0, b0, q1, q2 and µ0

are arbitrary constants.
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If we can prove that there exist a bounded open set G ⊂ R+ × R2, q > 0
and r > 0 such that u(t, x, y, z), utx(t, x, y, z), ux(t, x, y, z), ux2(t, x, y, z), ux4(t, x, y, z),

uy2(t, x, y, z), v(t, x, y, z), vtx(t, x, y, z), vx2(t, x, y, z), vx4(t, x, y, z) and vy2(t, x, y, z) are
uniformly bounded for all (t, x, y, z) ∈ G × Kq(r), continuous with respect to (t, x, y) ∈ G
for all z ∈ Kq(r) and analytic with respect to z ∈ Kq(r) for all (t, x, y) ∈ G, theorem 2.1 will
show that there exist U(t, x, y), V (t, x, y) ∈ (S)−1 such that u(t, x, y, z) = HU(t, x, y)(z)

and v(t, x, y, z) = HV (t, x, y)(z) for all (t, x, y, z) ∈ G × Kq(r) and that U(t, x, y) and
V (t, x, y) solve (1.3) with (1.4). From the above, we have that U(t, x, y) and V (t, x, y) are
the inverse Hermite transformations of u(t, x, y, z) and v(t, x, y, z). Hence, (3.13) yields that
solutions of (1.3) with (1.4) are{

U(t, x, y) = ±√
αb0 + 12λ2q2�

�2((t, x, y)),

V (t, x, y) = b0 ± 12λ2q2
√

α��2((t, x, y))
(3.14)

with

(t, x, y) = λx + θy + σ

∫ t

0
H(s) ds + µ0, (3.15)

where θ , σ and λ satisfy (3.12), α > 0, b0, q1, q2 and µ0 are arbitrary constants.
For different parameters q0, q1 and q2, table 1 of Zhou et al in [12] shows the solutions

for (3.7). Hence, we shall use table 1 of Zhou et al and (3.7) to give two examples for different
q0, q1 and q2.

(i) For q0 = 1, q1 = −1 − m2 and q2 = m2, the solution of (3.7) is �(ϕ(t, x, y, z)) =
sn ϕ(t, x, y, z). Thus, the solutions of (3.1) with (3.2) are{

u(t, x, y, z) = F(ϕ(t, x, y, z)) = ±√
αb0 + 12λ2m2 sn2ϕ(t, x, y, z),

v(t, x, y, z) = G(ϕ(t, x, y, z)) = b0 ± 12λ2m2√αsn2ϕ(t, x, y, z)
(3.16)

with ϕ(t, x, y, z) being defined by (3.4).
The property of the Jacobian elliptic function sn x (see chapter 10 of Wang and Guo

[6] for details) shows that the conditions of theorem 2.1 are all satisfied. Hence, there are
stochastic processes U(t, x, y) and V (t, x, y) which are the inverse Hermite transformations
of u(t, x, y, z) and v(t, x, y, z) such that{

U(t, x, y) = ±√
αb0 + 12λ2m2 sn�2(t, x, y),

V (t, x, y) = b0 ± 12λ2m2√α sn�2(t, x, y)
(3.17)

are solutions of (1.3) with (1.4), where (t, x, y) is defined by (3.15).
Put m → 1, we have sn ϕ → tanh ϕ. Thus, (3.16) becomes

u(t, x, y, z) = ±√
αb0 + 12λ2 tanh2ϕ(t, x, y, z)

= ±√
αb0 + 12λ2 − 12kλ2 sech2ϕ(t, x, y, z),

v(t, x, y, z) = b0 ± 12λ2√α tanh2ϕ(t, x, y, z)

= b0 ± 12λ2√α ∓ 12λ2√α sech2ϕ(t, x, y, z)

(3.18)

with ϕ(t, x, y, z) as (3.4). Equation (3.18) gives the solitary wave solutions of (3.1) with (3.2)
for any fixed z ∈ CN.

Using the property of the function sech x and (3.18), we have{
U(t, x, y) = ±√

αb0 + 12λ2 − 12kλ2 sech�2(t, x, y),

V (t, x, y) = b0 ± 12λ2√α ∓ 12λ2√α sech�2(t, x, y)
(3.19)

are solutions of (1.3) with (1.4), where (t, x, y) is defined by (3.15).



Exact solutions for Wick-type stochastic coupled Kadomtsev–Petviashvili equations 821

Choosing H(t) = f (t) + Wt , where f (t) is a real bounded or integrable function on
R+,Wt = Ḃt and Bt is a Brownian motion, we have that U(t, x, y) and V (t, x, y) satisfy
(3.17) or (3.19) (for m → 1) with

(t, x, y) = λx + θy + σ

[∫ t

0
f (s) ds + Bt

]
+ µ0. (3.20)

Since exp�{Bt } = exp
{
Bt − 1

2 t2
}
, (3.19), (3.20) and the definition of the function sech x yield

that the solutions of (1.3) with (1.4) are{
U(t, x, y) = ±√

αb0 + 12λ2 − 12kλ2 sech21(t, x, y),

V (t, x, y) = b0 ± 12λ2√α ∓ 12λ2√α sech21(t, x, y)
(3.21)

with

1(t, x, y) = λx + θy + σ

[∫ t

0
f (s) ds + Bt − 1

2
t2

]
+ µ0. (3.22)

In (3.16)–(3.22), θ , σ and λ satisfy βθ2 + λσ + λ2[λ2(1 + m) ± √
αb0] = 0, α > 0, β, µ0

and b0 are arbitrary constants.
(ii) For q0 = 1 − m2, q1 = 2m2 − 1 and q2 = −m2 (0 < m < 1), we have �(ϕ) = cn ϕ

and {
u(t, x, y, z) = ±√

αb0 − 12λ2m2 cn2ϕ(t, x, y, z),

v(t, x, z) = b0 ∓ 12λ2m2√α cn2ϕ(t, x, y, z),
(3.23)

with ϕ(t, x, y, z) which is defined by (3.4), are solutions of (3.1) with (3.2).
The property of the Jacobian elliptic function cn x (see chapter 10 of Wang and Guo

[6] for details) shows that the conditions of theorem 2.1 are also satisfied. Hence, there are
stochastic processes U(t, x, y) and V (t, x, y) which are white noise functionals and are the
inverse Hermite transformations of u(t, x, y, z) and v(t, x, y, z) such that{

U(t, x, y) = ±√
αb0 − 12λ2m2 cn�2(t, x, y),

V (t, x, y) = b0 ∓ 12λ2m2√α cn�2(t, x, y),
(3.24)

with (t, x, y) being defined by (3.15), are solutions of (1.3) with (1.4).
For m → 1, we have cn ϕ → sech ϕ and (3.23) yields{

u(t, x, y, z) = ±√
αb0 − 12λ2 sech2ϕ(t, x, y, z),

v(t, x, y, z) = b0 ∓ 12λ2√α sech2ϕ(t, x, y, z),
(3.25)

with ϕ(t, x, y, z) being defined by (3.4), are solutions of (3.1) with (3.2).
Equation (3.25) shows that solutions of (1.3) with (1.4) are{

U(t, x, y) = ±√
αb0 − 12λ2 sech�2(t, x, y),

V (t, x, y) = b0 ∓ 12λ2√α sech�2(t, x, y),
(3.26)

with (t, x, y) being defined by (3.15).
For H(t) = f (t) + Wt , as in the discussion in case (i) we have that solutions of (1.3) with

(1.4) are the following:{
U(t, x, y) = ±√

αb0 − 12λ2 sech21(t, x, y),

V (t, x, y) = b0 ∓ 12λ2√α sech21(t, x, y),
(3.27)

with 1(t, x, y) being defined by (3.22).
In (3.23)–(3.27), θ , σ and λ satisfy βθ2 + λσ − λ2[4λ2(2m2 − 1) ∓ √

αb0] = 0, α > 0,
β, µ0 and b0 are arbitrary constants.
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Remark.

(i) Since f �(t) = f (t) for any nonrandom measurable function f (t), (3.14), (3.17), (3.19),
(3.24) and (3.26) give the solutions of the coupled KP equations with variable coefficients
(1.1) with (1.2).

(ii) Since there is a unitary map between the Wiener white noise space and the Poisson white
noise space, we can obtain solutions of the Poissonian SPDEs simply by applying this
map to solutions of the corresponding Gaussian SPDEs. A nice, concise account of this
connection was given by Benth and Gjerde in [1] and by Holden et al in section 4.9 of
[2]. Hence, we can get exact periodic wave solutions of (1.3) in the same way as in the
Gaussian case, when A(t), B(t),H(t) and G(t) are Poissonian white noise functionals,
satisfying (1.4).
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